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EXPERIMENT 5: 
SERIES AND PARALLEL RLC RESONATOR CIRCUITS 

Equipment List 
 S1 BK Precision 4011 or 4011A 5 MHz Function Generator 

 OS BK 2120B Dual Channel Oscilloscope 

 V1 BK 388B Multimeter 

 L1 Leeds & Northrup #1532 100 mH Inductor 

 R1 Leeds & Northrup #4754 Decade Resistor 

 C3 Cornell-Dubilier #CDA2 Decade Capacitor 

 C2 Cornell-Dubilier #CDB3 Decade Capacitor 

 General Radio #1650-A Impedance Bridge 

Introduction 
Consider the LRC circuit drawn to the right. According to Kirchoff s Law, at any time after the 

switch is closed we must find 

𝑉 = 𝑉𝑅 + 𝑉𝐶 + 𝑉𝐿

𝑉 = 𝑖𝑅𝑡 +
𝑄

𝐶
+ 𝐿

𝑑𝑖

𝑑𝑡

    (1) 

where the total resistance in the circuit is the sum of the 

external resistance and the internal resistance of the 

inductance; i.e. 𝑅𝑡 = 𝑅 + 𝑅𝐿. Taking account of the 

relation dq/dt = i, after the switch is closed, the derivative 

of this equation is 

𝑑𝑉

𝑑𝑡
= 𝑅𝑡

𝑑𝑖

𝑑𝑡
+

1

𝐶
𝑖 + 𝐿

𝑑2𝑖

𝑑𝑡2   (2)

A solution to this second order differential equation is known to be damped harmonic and, for the initial 

conditions q = i = 0, given by 

𝑖 =
𝑉

𝐿√𝛿
𝑒−

𝑅𝑡
2𝐿

𝑡 sin[(√𝛿)𝑡]      (3)

This equation contains an exponential damping term times a sine wave term where the frequency of 

the sine wave is 

𝜔 = √𝛿 𝛿 =
1

𝐿𝐶
−

𝑅𝑡
2

4𝐿2
      (4)

Figure 1: LRC Circuit 
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This solution has three regions of interest:  

1. underdamped (5 > 0) - the solution is damped 

oscillations 

 

 

2. overdamped (5 < 0) - the argument of the sine 

function is complex; thus, the sine function 

becomes a real exponential 

 

3. critically damped (5 =0) - the current returns 

to zero in the shortest possible time. 

It should be recognized that in any circuit which undergoes 

an abrupt change in voltage these effects will be present. 

Case one is the most frequent and is called ringing. 

In an alternating current LRC circuit the change in voltage 

with time in equation 2 is no longer zero, and whatever 

transient effects due to the turning on of the AC generator 

will quickly disappear. For a sine wave input, the solution to equation 2 is also a sine wave. For the series 

circuit, the current is the same through all components. As we observed last week, the voltage across the 

capacitor lags the current by 90°. Thus, VL and VC are 180° out of phase with one another in the series 

circuit. If we choose the phase of the current to be zero, the current can be written as 

𝑖𝑠 = 𝐼 sin(𝜔𝑡)       (5) 

Then the source voltage is 

𝑣𝑠 = 𝑉 sin(𝜔𝑡 + 𝜙)        (6) 

where the source voltage leads the current by the phase angle 

𝜙 = tan−1 (
𝜔𝐿−1

𝜔𝐶⁄

𝑅
)         (7)   

 

The phase angle can be illustrated by the vector 

representation in Figure 3. In this example the 

inductive reactance 𝑋𝐿 = 𝜔𝐿 is greater than the 

capacitive reactance 𝑋𝐶 = 1
𝜔𝐶⁄  , thus, the phase 

angle is positive and the source voltage leads the 

source current. For a constant amplitude source 

Figure 2: Underdamped, Overdamped, and 
Critically Damped LRC Circuit Response 

Figure 3 Phase Relationships 
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𝐼 =
𝑉

𝑍
           (8) 

where the impedance Z is given by 

𝑍 = √𝑅2 + (𝜔𝐿 − 1
𝜔𝐶⁄ )

2
     (9) 

The important difference between the LRC circuit and that of either the RC or RL circuits is that the 

current does not asymptotically increase or decrease but has a maximum. Note the behavior of the 

impedance 

𝑍 → {
∞ 𝑎𝑠 𝜔 → 0
∞ 𝑎𝑠 𝜔 → ∞

      (10) 

Note that the current goes to zero when the impedance becomes infinite. Thus, the current is zero 

for zero frequency, peaks for some finite frequency, and then drops to zero for large frequencies. The 

current reaches a maximum when the impedance is a minimum, or equivalently, for that frequency 

where the capacitive and inductive reactances are equal; i.e., from equation 9 

𝜔𝑜𝐿 −
1

𝜔𝑜𝐶
= 0   ⇒   𝜔𝑜 =

1

√𝐿𝐶
       (11) 

This type of circuit is a selective filter and is the basis for tuning in radios and TVs, etc. A measure of how 

sharp the resonance peak is, or the fineness of tuning, is called the Q factor of the circuit. The Q value 

is defined as the inverse of the fractional bandwidth.  

1

𝑄
=

∆𝜔

𝜔𝑜
=

∆𝑓

𝑓𝑜
       (12) 

In an LRC series circuit the Q value can be calculated for R not too large as 

𝑄 =
𝜔𝑜𝐿

𝑅
          (13) 

Part1: Ringing 

 

Figure 4:Laboratory Setup for Ringing 
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a. Measure the resistance of the inductor L1 with your multimeter. 

b. Construct the circuit shown above. This should produce an underdamped circuit. 

c. Using equation 4, calculate 5 and then from equation 3 the frequency of oscillation, f(). 

d. Measure the actual frequency of oscillation from the scope B input. 

e. Vary R and C around the given values. 

Question 1: What are the most obvious effects of changing R and C? Answer in terms of equations 3 

and 4. 

f. For L = 100 mH and R = 500 Q, calculate the value of C needed to produce critical 

damping. 

g. Adjust C for critical damping on the oscilloscope. 

Question 2: Can you guess why there is a discrepancy between the actual C and the calculated C to 

produce critical damping? 

 Part II: Resonance 
a. I will demonstrate the usage of the Impedance Bridge and how to measure the inductance 

and Q value of an inductor at a frequency of 1000 Hz. 

b. You can use the bridge to measure the L and Q of your inductor. Use your digital 

voltmeter to determine the internal resistance of the inductor. 

c. Set up the following circuit to determine the resonance frequency and Q of the circuit 

experimentally. 

 

Figure 5 Series Resonance Circuit 

Note: The 10 resistor is a current transducer, turning current into voltage by Ohms Law. 

d. Look for a resonance around 900 Hz. Remember to maintain the source voltage constant. The 

resonance is reached when VR is a maximum. When you find resonance frequency, make many 

measurements around the resonance. 

e. Measure IR as a function of frequency about the resonance. 

f. Plot IR
2 versus frequency. This curve is proportional to power. 

g. Determine the resonance frequency f0 and the bandwidth f from your plot. 
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h. Calculate the Q of the circuit from equation 13. 

i. Using equation 12, determine Q from the power plot. This should be smaller than the 

value you measured with the inductance bridge since you have not included the resistive 

loading of the signal generator. 

Part III: Parallel Resonance 
a. Set up the following circuit to determine the resonance frequency the parallel circuit 

experimentally

 

Figure 6: Parallel Resonant Circuit 

 

b. Set up the following circuit to determine the resonance frequency the parallel 
circuit 
experimentally. 

c. Measure IR for the load resistor as a function of frequency about the resonance. 
d. Plot IR

2 of versus frequency. This curve is proportional to power. From the graph 
determine the resonance frequency. 

e. Analyze the circuit theoretically using complex impedances and compare your 
results to your experimentally determined resonance. (For this part ignore the 
internal resistance of the inductor. 

Part IV: The Transformer 
In a transformer made up of to coils of wire, one inside the other, the voltage developed across the 

loops is not resistive in the sense of an IR drop, but is given by Faraday's law as 

𝑉1 = −𝑁1
𝑑Φ𝐵

𝑑𝑡
       (14) 

where (p is the magnetic flux through each loop. If we assume that all of the magnetic field lines from 

loop 1 go through loop 2, as shown, then the change in flux/loop in loop two is just the change in 

flux/loop in loop one; thus, there is an EMF developed in the second loop given by 

𝑉2 = −𝑁2
𝑑Φ𝐵

𝑑𝑡
       (15) 
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where the difference in EMF's is due to the different number of turns in the two loops. In both loops the 

rate of change of the magnetic flux with time is the same. We can use this fact to show that the EMF's of 

the two coils can be related by 

𝑉1

𝑉2
=

𝑁1

𝑁2
         (16) 

which says that the ratio of voltages between loops one and two goes as the ratio of the number of turns 

(i.e. the turns ratio). 

a. Connect the input leads of the oscilloscope to the inner coil (secondary) of the 

transformer. These leads are at the top of the transformer. Make sure the iron rod is in 

place inside the secondary. Connect the even numbered table terminals to the outer coil 

(primary) of the transformer. These leads are at the base of the transformer. 

b. Measure and record the peak-to-peak voltage of the secondary. 

c. Measured the peak-to-peak voltage of the primary and use this to determine the turns 

ratio from equation 16. 

d. Slowly pull the secondary out from the primary holding the rod to the secondary. Since 

the magnetic flux of the primary no longer goes completely through the secondary you 

should observe a decrease in the secondary voltage. Replace the secondary coil. 

e. Slowly pull the iron rod out from the secondary coil then replace it. The iron rod plays a 

central role in confining the magnetic field lines inside the secondary. Its removal also 

acts to decrease the secondary voltage. 

Question 3: What happened when you pulled the secondary coil out? What happened when you pulled 

the iron rod out? Why does this make sense?
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Name:__________________________  

Part I: 
RL = 

 = 

f() =  

f(measured) = 

 

C(theory) =  

C(measured) = 

Part II: 
L = 

Q = 

 RL = 

 

f(Hz) i i2 

200 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5000 

  

fo = 
Q(theory) = 
Q(measured) = 
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Part III: 
 

f(Hz) i i2 

100 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1000 

  

fo =  =  

Part IV: 
Peak-to-Peak Secondary Voltage = 

Peak-to-Peak Primary Voltage =  

Turns Ratio = 

 


